A Laplace Operator on Semi-Discrete Surfaces

نویسنده

  • Wolfgang Carl
چکیده

This paper studies a Laplace operator on semi-discrete surfaces. A semidiscrete surface is represented by a mapping into three-dimensional Euclidean space possessing one discrete and one continuous variable. It can be seen as a limit case of a quadrilateral mesh, or as a semi-discretization of a smooth surface. Laplace operators on both smooth and discrete surfaces have been an object of interest for a long time, also from the viewpoint of applications. There are a wealth of geometric objects available immediately once a Laplacian is defined, e.g., the mean curvature normal. We define our semi-discrete Laplace operator to be the limit of a discrete Laplacian on a quadrilateral mesh, which converges to the semi-discrete surface. The main result of this paper is that this limit exists under very mild regularity assumptions. Moreover, we show that the semi-discrete Laplace operator inherits several important properties from its discrete counterpart, like symmetry, positive semi-definiteness, and linear precision. We also prove consistency of the semi-discrete Laplacian, meaning that it converges pointwise to the LaplaceBeltrami operator, when the semi-discrete surface converges to a smooth one. This result particularly implies consistency of the corresponding discrete scheme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Discrete Laplace-Beltrami Operator for Simplicial Surfaces

We define a discrete Laplace-Beltrami operator for simplicial surfaces (Definition 16). It depends only on the intrinsic geometry of the surface and its edge weights are positive. Our Laplace operator is similar to the well known finite-elements Laplacian (the so called “cotan formula”) except that it is based on the intrinsic Delaunay triangulation of the simplicial surface. This leads to new ...

متن کامل

On approximation of the Laplace-Beltrami operator and the Willmore energy of surfaces

Discrete Laplace–Beltrami operators on polyhedral surfaces play an important role for various applications in geometry processing and related areas like physical simulation or computer graphics. While discretizations of the weak Laplace–Beltrami operator are well-studied, less is known about the strong form. We present a principle for constructing strongly consistent discrete Laplace–Beltrami o...

متن کامل

Discrete Laplace-Beltrami Operator on Sphere and Optimal Spherical Triangulations

In this paper we first modify a widely used discrete Laplace Beltrami operator proposed by Meyer et al over triangular surfaces, and then establish some convergence results for the modified discrete Laplace Beltrami operator over the triangulated spheres. A sequence of spherical triangulations which is optimal in certain sense and leads to smaller truncation error of the discrete Laplace Beltra...

متن کامل

Convergent discrete Laplace-Beltrami operators over surfaces

The convergence problem of the Laplace-Beltrami operators plays an essential role in the convergence analysis of the numerical simulations of some important geometric partial differential equations which involve the operator. In this note we present a new effective and convergent algorithm to compute discrete Laplace-Beltrami operators acting on functions over surfaces. We prove a convergence t...

متن کامل

Decay of the Fourier Transform of Surfaces with Vanishing Curvature

We prove Lp-bounds on the Fourier transform of measures μ supported on two dimensional surfaces. Our method allows to consider surfaces whose Gauss curvature vanishes on a one-dimensional submanifold. Under a certain non-degeneracy condition, we prove that μ̂ ∈ L4+β , β > 0, and we give a logarithmically divergent bound on the L4-norm. We use this latter bound to estimate almost singular integra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Foundations of Computational Mathematics

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2016